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Table 3. Relationship between x and y for cylinders o f  
unit radius 

X 0 0-000001 0.00001 0.0001 0.001 0"01 0-1 1 
y 0 0-003 0"009 0"03 O" 1 0"3 0"9 2 

6. Applications 

6.1. The geometry of  laser fusion 

When apparatus is designed for laser fusion, con- 
sideration is given to arranging several pairs of 
inward-pointing lasers so that the axes of their beams 
intersect at a point. If the laser beams are assumed 
to have circular cross sections, the volume illuminated 
by all the lasers will be the intersection of right circular 
cylinders. For reasons of thermal stability of the 
excited plasma at the centre, the lasers are usually 
arranged in a symmetrical fashion. Here various poss- 
ible arrangements have been considered. 

6.2. Dissolution of  cubic crystals 

The morphologies of partially dissolved crystals 
are frequently rounded (Heimann, 1975), but edges 
and vertices may still be well defined. A dissolution 
shape depends on the starting conditions and con- 
tinuously changes as dissolution proceeds (Frank, 
1972). Even if the chamfering of edges may be 
approximated by parts of cylindrical surfaces, which 
eventually join with others from parallel edges to 
form completed cylinders, it would be unusual for a 
dissolving crystal if the axes of such cylinders passed 
through a single point. The edges grouped around a 
given symmetry axis of a dissolved crystal often fail 
to meet on the axis as they should in an ideally 
symmetric body; and in etching experiments surface 
roughening and etch pitting often mask any underly- 

ing ideal morphology. Notwithstanding these mis- 
givings, there are rare occasions when some of the 
solids depicted here resemble actual dissolution 
bodies. For example, Fig. 2 bears a similarity to 
dissolved crystals of the diamond structure [Ellis, 
1954; Batterman, 1957 (see Fig. 11, p. 1239); Moore 
& Lang, 1974]. 

7. Concluding remarks 

All the regular and quasi-regular solids for intersect- 
ing cylinders have been drawn, we believe for the 
first time. They may have relevance in certain applica- 
tions, but in any case they have a beauty of their own. 

We thank Professor Sir Charles Frank FRS and the 
referees for their constructive comments during the 
preparation of this manuscript. 
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Abstract 

Contrary to the recommendation in some textbooks, 
enhanced reflexions should not be divided by the 
enhancement factor in forming general averages for 
normalization. The intensity required for the 
enhancement is drawn from the adjacent reflexions 
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in the reciprocal lattice, and the correct average 
intensity is obtained by including all reflexions at 
their observed intensity. Weights based on the number 
of reflexions of different types intercepted by the 
spherical shell that defines those included in the 
average may be appropriate. 
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Introduction 

Symmetry elements can be divided into two types: 
those that cause systematic absences and those that 
do not. Those producing systematic absences (glide 
planes, screw axes) produce at the same time groups 
of reflexions (confined to zones or rows in reciprocal 
space, respectively) with an average intensity an 
integral multiple of the general average. As in the 
case of lattice centring, the fraction of reflexions 
missing and the integer multiplying the average are 
related in such a way that the overall average intensity 
is unchanged. The mechanism for compensation for 
the reflexions with enhanced intensity is obvious. 
Certain symmetry elements not producing absences 
(mirror planes and rotation axes) cause equivalent 
atoms to coincide in a plane or a line projection, and 
hence produce a zone or row in reciprocal space for 
which the average intensity is an integral multiple of 
the general  average (Wilson, 1950). Further alter- 
ations of the intensity distribution occur if two or 
more such symmetry elements are present in the space 
group. Such multiple enhancements were treated in 
detail by Rogers (1950). There is, however, no obvious 
mechanism for compensation for this enhancement. 
When reflexions are few compensation, or lack of it, 
may be an important matter in assigning an approxi- 
mate absolute scale by comparing observed and 
calculated intensities. 

Wilson and Nigam (Wilson, 1964; Nigam, 1972; 
Nigam & Wilson, 1980), noting that in such cases the 
finite size of atoms results in forbidden ranges of 
positional parameters, have shown that there is a 
general diminution of the intensity of layers (rows) 
in the immediate neighbourhood of the enhanced 
zones (rows), just sufficient to compensate for the 
enhancement. In forming general averages, therefore, 
reflexions from enhanced zones or rows should be 
included at their full intensity, not divided by the 
multiplier, though the latter procedure is recommen- 
ded in many textbooks of crystallography. One could 
argue for the former procedure on general grounds 
of conservation of energy. Within the approximation 
of the dynamical theory of X-ray diffraction, each 
atom scatters a definite quantity of energy from the 
incident beam, and interference, constructive or 
destructive, merely determines where the energy is 
located in reciprocal space, without altering the total 
amount. If  any reflexions are included at reduced 
weight in general averages, the general averages will 
tend to be lower than the theoretical value 

N 

= ~ Ifjl 2, (1) 
j = l  

and a bias will result. A detailed calculation in a 
particular case, however, may be more convincing. 

.The effect of a mirror plane 

In the case of a mirror plane perpendicular to c, the 
hkO reflexions are doubled in average intensity, and 
the average intensity in the rest of reciprocal space 
is modulated by the single-slit diffraction function 
(sin x) /x .  The expression for the average intensity, 
as a fuoction of l, is 

(I)  = (1+ k),X (2) 

where 
k = l ,  / = 0 ,  (3) 

=-(sin~l)/('n'-fl)l, I/1>0. (4) 

fl = 4"n'a/c and a is an average atomic radius (Wilson, 
1964). The value of K, the sum of k over all l, is 

oo 

K = 1 - 2  • (sin f l l ) / (Tr- f l ) l .  (5) 
/ = 1  

The series in (5) is well known and sums to unity, so 
that 

K =0.  (6) 

The average intensity, with the hkO reflexions 
included at their full value, is thus correct. 

The preceding calculation was based on the entire 
reciprocal lattice. The practical procedure is to 
average the reflexions included within a spherical 
shell in reciprocal space, and the upper limit of l is 
not oo but some finite value, L. By a fortunate 
geometrical coincidence, the area of a constant-/ 
plane intercepted between the two spheres determin- 
ing the shell is independent of I for values of l < L, 
and thus the number of reflexions included for each 
value of l < L is constant except for edge effects. The 
average intensity of the reflexions included within the 
shell is then 

(I) = ( 1 + ( K ) ) 2 ,  (7) 
where 

L 

( K ) = ( 2 L + I ) - I [ 1 - 2 E  ( s in f l l ) / ( .a ' - f l ) l ]  (8) 
1=1 

oo 

= 2 ( 2 L +  1)-1 ~ ( s in f l l ) / ( .a ' -B) l .  (9) 
L+I 

The series consists of terms of varying sign and 
magnitude decreasing as 1-1. By various approxima- 
tions [such as replacing it by a sine integral 
(Abramowitz & Stegun, 1970, ch. 5)], the series can 
be shown to be of the order of (2L+ 1) -1, so that (I), 
with hk0's included at full weight, departs from its 
ideal value ,X by a fraction of the order of (2L + 1)-2. 
On the other hand, if the hk0's are included only at 
half weight, the initial 1 in the brackets in (8) is 
replaced by ½, cancellation is less complete, and (I) 
differs from its ideal value by a fraction of the order 
of (2L+ 1) -1. Whether either fraction is non-negli- 
gible depends on the value of L and the purpose for 
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which the average is required, but it is (i) less work 
and (ii) more nearly exact, not to weight the hkO 
reflexions. 

Other symmetry elements 

A rotation axis of order n parallel to c gives 001 
reflexions of n-fold intensity, while the average 
intensity in the rest of reciprocal space is modulated 
by the diffraction function Jl(X)/X (Nigam & Wilson, 
1980"). The enhanced intensity of the 001 reflexions 
is compensated if the entire reciprocal lattice is con- 
sidered, but (unlike the areas of the constant-I planes 

* In this paper there is confusion about the meaning of the 
symbol s. It is not (2 sin 0)/A as is stated in the Abstract, but the 
projection of this quantity on to a plane perpendicular to the 
cylinder axis - this is clear from the introduction of the symbol in 
the context of their equation (4). Nigam & Wilson considered, in 
fact, only twofold axes, but their equations are valid also for the 
axes 3, 4 or 6 if the average atomic radius a is replaced by x/3a/2, 
x/2a or 2a respectively. 

considered above) the lengths of constant-hk rows 
intercepted by a concentric shell are not independent 
of hk, and it may be worth while to allow for the 
differences in intercepted length in forming averages. 

There is a somewhat similar phenomenon associ- 
ated with a centre of symmetry; though there are no 
enhanced reflexions, the average intensity in 
reciprocal space is modulated by a spherical Bessel 
function (Wilson, 1981); this effect is likely to be 
small compared with the larger stereochemical effects 
discussed there. 
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Abstract 

The wavelength dependence of Si structure factors 
was measured by the Pendelli~sung method described 
in the paper of Saka & Kato [Acta Cryst. (1986 !. A42, 
469-478] in the range from 0.8 down to 0.3 A with 
an accuracy level better than 0.05% in most cases. 
The same conclusion as Takeda & Kato [Acta 
Cryst. (1978). A34, 43-47] was obtained; namely that 
Cromer & Liberman's theory of anomalous dispersion 
[Cromer & Liberman (1970). J. Chem. Phys. 53, 1891- 
1898] is essentially correct. As a consequence Jensen's 
magnetic-scattering term [Jensen (1979). Phys. Lett. 
A, 74, 41-44] is not acceptable. 
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I. Introduction 

In some diffraction problems an accurate value for 
the scattering amplitude depends on the anomalous 
dispersion. Examples are accurate determination of 
the charge density through the measurement of the 
crystal structure factor (Fg) and phase determination 
by the use of synchrotron radiation or any X-ray 
source having a continuous spectrum. 

The fundamental theory of anomalous dispersion 
has been well established. Historically important 
literature can be seen in the textbook of James (1982) 
and the symposium report edited by Ramasoshan & 
Abrahams (1975). The relativistic treatment of this 
problem is described in the standard textbooks on 
quantum electrodynamics (Heitler, 1954; Akhiezer & 
Beresteskii, 1965). The theory was developed by 
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